Using Biased Discriminant Analysis for Email Filtering

نویسندگان

  • Juan-Carlos Gomez
  • Marie-Francine Moens
چکیده

This paper reports on email filtering based on content features. We test the validity of a novel statistical feature extraction method, which relies on dimensionality reduction to retain the most informative and discriminative features from messages. The approach, named Biased Discriminant Analysis (BDA), aims at finding a feature space transformation that closely clusters positive examples while pushing away the negative ones. This method is an extension of Linear Discriminant Analysis (LDA), but introduces a different transformation to improve the separation between classes and it has up till now not been applied for text mining tasks. We successfully test BDA under two schemas. The first one is a traditional classification scenario using a 10-fold cross validation for four ground truth standard corpora: LingSpam, SpamAssassin, Phishing corpus and a subset of the TREC 2007 spam corpus. In the second schema we test the anticipatory properties of the statistical features with the TREC 2007 spam corpus. The contributions of this work is the evidence that BDA offers better discriminative features for email filtering, gives stable classification results notwithstanding the amount of features chosen, and robustly retains their discriminative value over time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PKUICST at TREC 2015 Microblog Track: Query-biased Adaptive Filtering in Real-time Microblog Stream

This paper describes our approaches to real-time filtering task including push notifications on a mobile phone scenario and periodic email digest scenario in the TREC 2015 Microblog track. In the push notifications on a mobile phone scenario, we apply an adaptive timely query-biased filtering framework which utilizes two effective scores to estimate the relevance of tweets. External evidences a...

متن کامل

Real-time image annotation by manifold-based biased Fisher discriminant analysis

Automatic Linguistic Annotation is a promising solution to bridge the semantic gap in content-based image retrieval. However, two crucial issues are not well addressed in state-of-art annotation algorithms: 1. The Small Sample Size (3S) problem in keyword classifier/model learning; 2. Most of annotation algorithms can not extend to real-time online usage due to their low computational efficienc...

متن کامل

Kernel Biased Discriminant Analysis Using Histogram Intersection Kernel for Content-Based Image Retrieval

It is known that no single descriptor is powerful enough to encompass all aspects of image content, i.e. each feature extraction method has its own view of the image content. A possible approach to cope with that fact is to get a whole view of the image(object). Then using machine learning approach from user’s Relevance feedback to obtain a reduced feature. In this paper, we concentrate on some...

متن کامل

A Database for Automatic Persian Speech Emotion Recognition: Collection, Processing and Evaluation

Abstract   Recent developments in robotics automation have motivated researchers to improve the efficiency of interactive systems by making a natural man-machine interaction. Since speech is the most popular method of communication, recognizing human emotions from speech signal becomes a challenging research topic known as Speech Emotion Recognition (SER). In this study, we propose a Persian em...

متن کامل

Incremental tensor biased discriminant analysis: A new color-based visual tracking method

Most existing color-based tracking algorithms utilize the statistical color information of the object as the tracking clues, without maintaining the spatial structure within a single chromatic image. Recently, the researches on the multilinear algebra provide the possibility to hold the spatial structural relationship in a representation of the image ensembles. In this paper, a third-order colo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010